Topics in cubic special geometry

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special geometry, cubic polynomials and homogeneous quaternionic spaces

The existing classification of homogeneous quaternionic spaces is not complete. We study these spaces in the context of certain N = 2 supergravity theories, where dimensional reduction induces a mapping between special real, Kähler and quaternionic spaces. The geometry of the real spaces is encoded in cubic polynomials, those of the Kähler and quaternionic manifolds in homogeneous holomorphic f...

متن کامل

Special connections in almost paracontact metric geometry

‎Two types of properties for linear connections (natural and almost paracontact metric) are discussed in almost paracontact metric geometry with respect to four linear connections‎: ‎Levi-Civita‎, ‎canonical (Zamkovoy)‎, ‎Golab and generalized dual‎. ‎Their relationship is also analyzed with a special view towards their curvature‎. ‎The particular case of an almost paracosymplectic manifold giv...

متن کامل

Topics in Differential Geometry

In less than two pages (pp. 54–55) the Campbell-Baker-Hausdorff formula is taken care of, in a proof containing exactly forty-eight English words: the rest is algebraic manipulation. For some of us, myself included, this is an exposition devoutly-to-be-wished; for the complementary set of readers it’s something a lot less than palatable. So, given that Peter W. Michor’s Topics in Differential G...

متن کامل

Topics in Special Functions

In this article, we solve the connection problem of the Hermite polynomi-als with the classical continuous orthogonal polynomials belonging to Askey scheme, using the hypergeometric functions method combined is with the work the Fields and Ismail.

متن کامل

Topics in Hyperbolic Geometry

There are two types of parallel lines in Hyperbolic Geometry. There are those who diverge from each other in both directions (type 1) and those that diverge in one direction but come arbitrarily close to each other in the other direction (type 2). The first type have a minimum positive distance at points on a common perpendicular. The second type have no minimum distance: the distance tends to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2011

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.3622851